This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Substitution Reactions of A₄B₃X₂-Compounds (A=P; B=S,Se; X=I,Br,Cl)

Roger Blachnik^a; Kerstin Hackmann^a

^a Anorganische Chemie, Universität Osnabrück, BRD

To cite this Article Blachnik, Roger and Hackmann, Kerstin(1992) 'Substitution Reactions of A $_3$ B $_3$ X $_2$ -Compounds (A=P; B=S,Se; X=I,Br,Cl)', Phosphorus, Sulfur, and Silicon and the Related Elements, 65: 1, 99 - 102

To link to this Article: DOI: 10.1080/10426509208055328 URL: http://dx.doi.org/10.1080/10426509208055328

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SUBSTITUTION REACTIONS OF $A_4B_3X_2$ -COMPOUNDS (A=P; B=S,Se; X=I,Br,Cl)

ROGER BLACHNIK, KERSTIN HACKMANN Anorganische Chemie, Universität Osnabrück, BRD

Abstract Mixed halido compounds of the general formula P_4B_3XY (B=S, Se; X,Y=I, Br, C!) have been synthesized by reaction of $P_4B_3X_2$ molecules with bismuth- or mercury halides in CS_2 solution. ^{31}P -n.m.r. spectra have been measured and assigned. Predictive relationships were found between n.m.r. parameters for unsymmetric molecules and those for the symmetric ones, showing that the molecules can be composed from parts of the pure $P_4B_3X_2(Y_2)$ compounds.

INTRODUCTION

 α -P₄B₃I₂ 1·2 and β -P₄B₃I₂ 3·4·5.6 (B=S, Se) are well known compounds, produced by the reaction of P₄B₃ with iodine. α -P₄S₃I₂ was reacted with AgX (X=Br, Cl, CN,SCN) in CS₂ solution by FLUCK in 1976 7, who obtained a series of α -P₄S₃X₂ compounds. Recently we have synthesized all other molecules of the type P₄B₃X₂.8 By using Bi- or Hg-halides instead of Ag-halide we obtained higher yields in shorter times. With these reagents even the substitution in the β -P₄B₃I₂ molecules, which transform easily into the α -form at ambient temperature, was possible. In the case of insufficient amounts of halide being present for total substitution or if the reaction is stopped after a few hours mixed halides of the general formula P₄B₃XY are formed. The molecular structures of the α - and β -forms are shown in Figure 1.

 α -P₄B₃X₂ compounds belong to an AA'BB' spin-system in the ³¹P-n.m.r., the β -molecules to an AB₂X spin-system. All P₄B₃XY molecules show an ABCD spin-system.

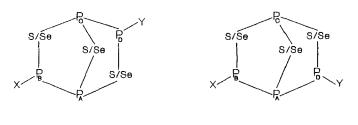


FIGURE 1

 α -P₄B₃XY

 β -P₄B₃XY

RESULTS AND DISCUSSION

The 31P-n.m.r. data of the compounds are summarized in the Tables 1-4.

TABLE I ³¹P-n.m.r. data of α-P₄S₃XY molecules TABLE 2 31P-n.m.r. data of α-P₄Se₃XY molecules X=1, Y=Br Lit 9 X=Br. Y=C1 X=1, Y=C X=1, Y=Br X = Bt. Y = Cl X=1, Y=C1 Chemical Chemical shifts (ppm) shifts (ppm) δ_A δ_B δ_C δ_D Coupling 128.31 105.72 109.50 105.11 129.05 129.30 131.51 125.12 125.29 151.98 125.38 127.79 158.08 128.72 112.95 132.26 132.04 134.33 134.13 109.94 113.06 фc 150.78 150.39 162.07 161.15 169.40 166.71 δ_D Coupling constants [Hz] constants [Hz] -241.8 -253.2 -240.6 J_{AB} -238.5 -251.7 -237.6 -242.1 JAC J_{AC} 72.1 72.4 68.1 70.6 85.3 81.8 83.6 J_{AD} J_{AD} 21.5 21.7 20.6 22.3 21.0 19.9 21.8 J_{BC} 19.9 20.1 18.7 19.1 19.6 18.5 18.9 J_{BC} 10.5 9.9 10.6 9.5 6.3 5.9 4.9 J_{BI)} J_{CD} rms [Hz] -255.9 -256.7 -262.9 -265.3 -254.1 -262.3 -263.8 1^{CD} rms (Hz) 0.07 0.38 0.25 0.26 0.220.03 0.04

TABLE 3 ³¹P-n.m.r. data of β-P₄S₃XY molecules

TABLE 4 ³¹P-n.m.r. data of β-P₄Se₃XY molecules X=1, Y=Cl X=[, Y=Br X=Br, Y=Cl Chemical shifts [ppm] 158.12 169.11 161.71 93.00 135.52 92.64 δ_B 173.12 174.32 172.15 131.66 150.03 146.38 δ_D Coupling constants [Hz] -265.6 -290.3 -272.9 JAB JAC 86.6 80.1 83.6 JAD 272.6 -292.0 281.4 J_{BC} 53.9 53.4 184.1 168.3 178.9 J_{BD} 55.5 57.5 56.9 J_{CD} rms [Hz]

0.16

	X=I, Y≖Br	X=Br, Y=Ci	X≖I, Y≖Ci
Chemical			
shifts [ppm]			
8 _A	159.77	170.67	163.39
δ _B	94.94	133.65	94.85
δc	197.28	198.29	196.36
ð _D	129.29	146.41	142.56
Coupling			
constants [Hz]			
J _{AB}	-259.9	-282.4	-266.4
JAC	78.4	72.1	76.5
JAD	-267.2	-284.5	-275.0
J _{BC}	56.4	58.4	56.5
J _{BD}	170.3	153.9	165.1
JCD	57.4	58.8	58.2
rms [Hz]	0.36	0.30	0.56

For the interpretation of the ³¹P-n.m.r. data the unsymmetric α-P₄B₃XY molecule can be considered as being composed of the two parts (P_A+P_B and P_C+P_D), each belonging to the symmetric disubstituted α -P₄B₃X₂ and α -P₄B₃Y₂ molecule. This simple relationship between the unsymmetric and the symmetric forms has already been discussed by TATTERSHALL 10. The influence of the parts on each other is low, as shown by the small changes in coupling constants and chemical shifts for the same Patoms in the unsymmetric and the symmetric molecules. These deviations increase with larger electronegativity difference between the two halogen atoms. Coupling constants between P-atoms belonging to different parts can be calculated from the respective average values of the parent molecules. Generally all rules of averaging found for the iodo-amino compounds 10 are valid. A comparison of the calculated values and the experimental data is given in Table 5.

If the sulphur is substituted with selenium the phosphorus P_A and P_C bonded to two selenium atoms are shifted to lower frequencies, the phosphorus $P_{
m B}$ and $P_{
m D}$ bonded to the halogen atoms show a small shift to higher frequencies.

The effect of an unsymmetric substitution is different in the β -compounds. The apical P-atom, separated by chalcogen atoms from the halogen bearing P-atoms, behaves like the P-atoms in the α -molecules. Its chemical shift remains nearly constant. The substitution of a halogen X by a more electronegative Y in the basal XP3X unit has a drastic effect. It can be explained in a simplified

53.4 56.9 53.8 57.2 55.2 55.5 0.3 -16.6 +17.8 +17.8 +0.6

83.6 83.5 +0.1

% - 5

+12.0 -10.6 161.7 161.0 +0.7 +0.6 -1.5 172.2 172.6 -0.4

TABLE 5 Relationship between n.m.r. parameters for α -P₄B₃XY compounds and those for α -P₄B₃X₂ and α -P₄B₃Y₂

TABLE 6 Relationship between n.m.r. parameters for β -P₄B₃XY compounds and those for β -P₄B₃X₂ and β -P₄B₃Y₂

approach. Electrons flow along the chain to the more electronegative halogen. This flow deshields the phosphorus nuclei. The effect decreases gradually along the chain in the direction of the less electronegative ligand at P_B . However, all chemical shifts and coupling constants can be calculated from the corresponding means of the pure β - $P_4B_3X_2$ compounds (Table 6). The coupling constants $^2J_{BD}$ can not be calculated because of the equivalence of δ_B and δ_D in the β - $P_4S_3X_2$ molecules. It increases as the size of the halogen atoms increase, possibly indicating that the substituents change their position relative to the phosphorus-sulphur frame. This change in geometry may contribute to changes in $^1J_{AB}$ and $^1J_{AD}$, too, because the bonds between these atoms are affected directly by the bond angle in the basal P_3 -unit.

A comparison of the β -P₄S₃XY and the β -P₄Se₃XY molecules reveals that the chemical shifts of P_A, P_B and P_D are moved about 2 ppm to higher frequencies. In contrast the phosphorus atom P_C has a significant shift to lower frequencies (about 15 ppm).

EXPERIMENTAL

MHz. A C_6D_6 capillary was used as the lock and external reference, chemical shifts are reported relative to 85 % H_3PO_4 - H_2O . The n.m.r. data were calculated by iterative fitting using PANIC ¹¹. α - $P_4S_3I_2$ ², β - $P_4S_3I_2$ ^{5,6}, α - $P_4S_3I_2$ ¹, β - $P_4S_3I_2$ ^{3,4} were made according to literature methods. The α - P_4B_3XY molecules were prepared by reacting a solution of 0.5g α - $P_4B_3I_2$ in 20 ml CS_2 with an amount of metal halide (bismuth or mercury) equivalent to half of the iodine atoms present. The solution was stirred at 297 K for 15 hours. For the preparation of α - P_4B_3BrCl we used α - $P_4B_3Br_2$. The β -forms were obtained in the same way. In this case the reaction temperature was lowered to 253 K to prevent isomerization to the α -molecules. The reaction time was 5 hours.

The ³¹P-n.m.r. spectra were measured using a BRUKER AC 250 spectrometer operating at 101.256

ACKNOWLEDGEMENTS

We wish to express our gratitude to the DFG and the Fonds der chemischen Industrie.

REFERENCES

- 1. R.Blachnik, G.Kurz, U.Wickel, Z. anorg. allg. Chem., 420, 247 (1976)
- 2. D.A. Wright, B.R. Penfold, Acta Cryst., 12, 455 (1959)
- 3. J.Mai, Chem. Ber., 60, 2222 (1927)
- 4. G.J.Penney, G.M.Sheldrick, Acta Cryst., B26, 2092 (1970)
- 5. G.W.Hunt, A.W.Cordes, <u>Inorg.Chem.</u>, <u>10</u>, 9, 1935 (1971)
- 6. G.J.Penney, G.M.Sheldrick, J. chem. Soc.(A), 1100 (1971)
- E.Fluck, S. Yutronic, W. Haubold, Z. anorg. allg. Chem., 420, 247 (1976)
- 8. R.Blachnik, K.Hackmann, H.-P.Baldus, Z. f. Naturforsch., 46b (1991)
- 9. B.W. Tattershall, J.Chem.Soc, Dalton Trans., 1515 (1987)
- 10. B.W. Tattershall, <u>J. chem. Soc.</u>, Dalton Trans., 483 (1991)
- 11. Bruker Software Release